Conditional Random Fields for Transmembrane Helix Prediction
نویسندگان
چکیده
It is estimated that 20% of genes in the human genome code for integral membrane proteins(IMPs) and some estimates are much higher. IMPs control a broad range of events essential to the proper functioning of cells, tissues and organisms. IMPs include the most common targets of clinically useful drugs, such as the G protein coupled receptors (GPCR), the target for more than 50% of prescription drugs [1]. However there is a dearth of high-resolution 3D structural information on the IMPs. The number of the IMPs depositions in the major structural holding, the Protein Data Bank is less than 0.4% of the collection [2]. Therefore good prediction methods of IMPs structures are to be highly valued. In this paper we apply Conditional Random Fields (CRFs) to build a probabilistic model to segment and label sequence data to solve the membrane protein helix prediction problem. The advantage of a CRFs is that it allows seamless integration of biological domain knowledge into the model. Our results show that the CRF model outperforms other well known helix prediction approaches on several important measures.
منابع مشابه
Segmentation Conditional Random Fields (SCRFs): A New Approach for Protein Fold Recognition
Protein fold recognition is an important step towards understanding protein three-dimensional structures and their functions. A conditional graphical model, i.e. segmentation conditional random fields (SCRFs), is proposed to solve the problem. In contrast to traditional graphical models such as hidden markov model (HMM), SCRFs follow a discriminative approach. It has the flexibility to include ...
متن کاملProtein Fold Recognition Using Segmentation Conditional Random Fields (SCRFs)
Protein fold recognition is an important step towards understanding protein three-dimensional structures and their functions. A conditional graphical model, i.e., segmentation conditional random fields (SCRFs), is proposed as an effective solution to this problem. In contrast to traditional graphical models, such as the hidden Markov model (HMM), SCRFs follow a discriminative approach. Therefor...
متن کاملA CRF Sequence Labeling Approach to Chinese Punctuation Prediction
This paper presents a conditional random fields based labeling approach to Chinese punctuation prediction. To this end, we first reformulate Chinese punctuation prediction as a multiple-pass labeling task on a sequence of words, and then explore various features from three linguistic levels, namely words, phrase and functional chunks for punctuation prediction under the framework of conditional...
متن کاملRNA secondary structure prediction using conditional random fields model
Non-coding RNAs (ncRNAs) have important biological functions in living cells dependent on their conserved secondary structures. Here, we focus on computational RNA secondary structure prediction by exploring primary sequences and complementary base pair interactions using the Conditional Random Fields (CRFs) model, which treats RNA prediction as a sequence labelling problem. Proposing suitable ...
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005